7. Perspektive AffinitätEine weitere geometrische AbbildungDiese Abbildung stellt eine natürliche Verallgemeinerung einer Axialspiegelung (über schiefe Axialspiegelung) dar. Ihre besondere Anwendung in der Raumgeometrie (Darstellende Geometrie, Schattenwurf ebener Figuren) wird abschließend an Beispielen hervorgehoben. Eine Abbildung der Ebene G
auf sich nennt man PERSPEKTIVE AFFINITÄT, wenn es
Durch Anwendung des ersten Strahlensatzes (FA:FB = FA':FB') folgt die Teilverhältnistreue der Affinität!
Wenn a parallel zu BC liegt, dann muss auch a' parallel zu B'C' sein, denn:
Sonderfälle: Orthogonale perspektive Affinität (AA' ^ g=g') Affine Scherung (AA' | | g = g') (Flächentreue Abbildung, vgl. Elem.geom.Teil 2) Axialspiegelung (vgl. Anfangsbemerkungen) Verallgemeinerung: Verbindungsgeraden AA' nicht mehr parallel, sondern alle durch einen Punkt (=Zentrum) verlaufend: Perspektive Kollineation |